Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

M. Krishnaiah, ${ }^{\text {a }}$ * R. Ravi Kumar, ${ }^{\text {a }}$
N. Jagadeesh Kumar, ${ }^{\text {a }}$
D. Gunasekar ${ }^{\text {b }}$ and
B. Jayaprakasam ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Physics, Sri Venkateswara
University, Tirupati (AP), India, and
${ }^{\mathbf{b}}$ Department of Chemistry, Sri Venkateswara
University, Tirupati (AP), India

Correspondence e-mail: mkphysvu@yahoo.com

Key indicators

Single-crystal X-ray study
$T=297 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.032$
$w R$ factor $=0.094$
Data-to-parameter ratio $=9.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

5-Hydroxy-7,8,2'-trimethoxyflavone

Molecules of the title compound, $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{6}$, are almost planar. The dihedral angle between the benzopyran system and the benzene ring is $3.36(5)^{\circ}$. In addition to an intramolecular $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bond, molecules are connected by weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form a twodimensional framework.

Comment

The title compound was isolated from the whole plant of Andrographis echioides Nees (Acanthaceae), an erect herb widely distributed in the dry districts of tropical India and Sri Lanka (Gamble, 1956). The leaf juice of the plant is used as a remedy for fevers (Kirtikar \& Basu, 1975). The study of the leaves leads to the isolation of the flavones, dihydroechioidinin, echioidinin, ethioidin, skullcapflavone $1,2^{\prime}-O$ methyl ether and skullcapflavone $1,2^{\prime}-O$ glucoside (Govindachari et al., 1965; Jayaprakasam et al., 1999). As a part of our ongoing investigation of medicinal plants, we report here the structure of the title 'skullcapflavone $1,2^{\prime}-O$ methyl ether' (I), which was isolated by Jayaprakasam et al. (1999).

The title compound is shown in Fig. 1 and selected geometry is given in Table 1. The benzopyran ring is essentially planar, with a maximum deviation from the plane of 0.023 (1) \AA. The benzene ring and the benzopyran group are almost coplanar, with a dihedral angle of $3.36(5)^{\circ}$ between their least-squares planes and an $\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 9-\mathrm{C} 10$ torsion angle of [176.22 (11) \AA]. The C2-C 9 bond length of 1.4733 (18) \AA is comparable with that in 6-methylflavone $[1.472$ (2) \AA A , where the dihedral angle between the benzene ring and the benzopyran group is 8.9 (3) ${ }^{\circ}$ (Hall et al., 2001), flavone-3'-sulfonamide $\left[1.478\right.$ (3) \AA], where the dihedral angle is $8.2(3)^{\circ}$ (Kendi et al., 2000), 5-hydroxyflavone $[1.465$ (4) \AA], where the dihedral angle is $5.2(9)^{\circ}$ (Shoja, 1990), and 5,7-dihydroxy- 4^{\prime} methoxy flavone [1.453 \AA], where the corresponding angle is 3.1° (Shoja, 1992). Generally in flavones, the small dihedral angle results in a short $\mathrm{C}-\mathrm{C}$ bond length between the

Received 5 July 2005
Accepted 3 August 2005
Online 12 August 2005

Figure 1
View of the title compound, showing 40% probability displacement ellipsoids. A dashed line indicates the intramolecular hydrogen bond.
benzene ring and the benzopyran group. On the other hand, flavone compounds that have a larger dihedral angle between the benzene ring and the benzopyran group have a significantly longer $\mathrm{C}-\mathrm{C}$ distance for the bond joining the two moieties, e.g. $\quad 2^{\prime}$-methyl-3'-nitroflavone $\quad\left[139.8\right.$ (2) ${ }^{\circ}$ and 1.491 (8) \AA; Kendi et al., 1996] and 5,4'-dihydroxy-3,6,7,8tetramethoxyflavone $\left[164.4\right.$ (6) ${ }^{\circ}$ and 1.503 (8) Å; Vijayalakshmi et al., 1986].

In addition to an intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond, molecules are linked via weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form a two dimensional network (Table 2).

Experimental

The dried and ground whole plant of A. echioides Nees (3 kg) was successively extracted with n-hexane, $\mathrm{Me}_{2} \mathrm{CO}$ and MeOH . The hexane extract, on purification over a silica gel column using $\mathrm{C}_{6} \mathrm{H}_{6}$ as eluant, yielded 100 mg of the sample.

Crystal data

```
C18}\mp@subsup{\textrm{H}}{16}{}\mp@subsup{\textrm{O}}{6}{
Mr}=328.3
Triclinic, P\overline{1}
a=7.602 (2) \AA
b=8.7563(10) \AA
c=11.642 (3) \AA
\alpha=85.252(16)
\beta=84.838(12)}\mp@subsup{}{}{\circ
\gamma=78.469(14)}\mp@subsup{}{}{\circ
V=754.6(3) \AA \AA
Z=2
```


Data collection

Enraf-Nonius CAD-4
\quad diffractometer
$\omega-2 \theta$ scans
Absorption correction: ψ scan
\quad (North et al., 1968)
$\quad T_{\min }=0.950, T_{\max }=0.970$
2854 measured reflections
2635 independent reflections
2289 reflections with $I>2 \sigma(I)$
$D_{x}=1.445 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.44 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} measured by KI flotation
Mo $K \alpha$ radiation
Cell parameters from 25
reflections
$\theta=2-25^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=297$ (2) K
Rectangular block?, yellow
$0.48 \times 0.25 \times 0.25 \mathrm{~mm}$
$R_{\text {int }}=0.006$
$\theta_{\text {max }}=25.0^{\circ}$
$h=0 \rightarrow 9$
$k=-10 \rightarrow 10$
$l=-13 \rightarrow 13$
2 standard reflections
frequency: 60 min
intensity decay: none

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0491 P)^{2}\right. \\
& +0.1561 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.17 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.13 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.121 \text { (7) }
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.094$
$S=1.07$
2635 reflections
282 parameters
All H -atom parameters refined

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right.$).

O4-C4	$1.2519(16)$	C2-C9	$1.4733(18)$
O5-C5	$1.3542(16)$		
C8-O8-C17	$113.37(11)$	C10-O10-C16	$119.09(12)$
C7-O7-C15	$119.10(12)$		
C4-C4A-C8A-C8	$-178.29(11)$	C3-C2-C9-C10	$3.7(2)$
O1-C2-C9-C14	$2.86(16)$	$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 9-\mathrm{C} 10$	$-176.22(11)$

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O5-H5 $\cdots \mathrm{O} 4$	$0.95(2)$	$1.69(2)$	$2.5855(15)$	$156(2)$
C6-H6 $\cdots \mathrm{O}^{\mathrm{i}}$	$0.96(2)$	$2.50(2)$	$3.4250(19)$	$162(1)$
C13-H13 $\mathrm{O}^{\text {ii }}$	$0.96(2)$	$2.54(2)$	$3.497(2)$	$174(2)$
C16-H16C $\cdots \mathrm{O}^{\text {iii }}$	$0.97(2)$	$2.47(3)$	$3.402(2)$	$162(2)$

Symmetry codes: (i)
$-x+1,-y-1,-z+1$.
All H atoms were clearly located in difference Fourier maps and refined independently with isotropic displacement parameters. The refined $\mathrm{C}-\mathrm{H}$ distances range from 0.941 (16) to 1.01 (2) \AA.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 in WinGX (Farrugia, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP in WinGX; software used to prepare material for publication: SHELXL97.

The authors acknowledge financial support from DRS, Department of Physics, S. V. University, Tirupati. Dr Babu Verghese is thanked for the collection of the X-ray diffraction data.

References

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Gamble, J. S. (1956). Flora of the Presidency of Madras. Vol. 2, p. 1051. Calcutta: Botanical Survey of India.
Govindachari, T. R., Parthasarathy, P. C., Pai, B. R. \& Subramanyam, P. S. (1965). Tetrahedron, 21, 2633, 3715.

Hall, B. J., Hanrahan, J. R., Janson, G. A. R., Hambley, T. W. \& Hibbs, D. E. (2001). Acta Cryst. E57, o592-o593.

Jayaprakasam, B., Damu, A. G. \& Gunasekhar, D. (1999). Phytochemistry, 52 1-3.
Kendi, E., Ozbey, S., Bozdag, O. \& Eartan, R. (1996). Cryst. Res. Technol. 5, 611-615.

organic papers

Kendi, E., Ozbey, S., Tuncbilek, M. \& Eartan, R. (2000). Acta Cryst. C56, 457458.

Kirtikar, K. R. \& Basu, B. D. (1975). Indian Medicinal Plants, Vol. 3. NewDelhi: Periodical Experts.
North, A. C. T., Phillips, D. C \& Mathews, F. S. (1968). Acta Cryst, A24, 351359.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Shoja, M. (1990). Acta Cryst. C46, 517-519.
Shoja, M. (1992). Acta Cryst. C48, 2033-2035.
Vijayalakshmi, J., Rajan, S. S., Srinivasan, R. \& Ramachandran Nair, A. G. (1986). Acta Cryst. C42, 1752-1753.

